Onderstaande tekst is niet 100% betrouwbaar

Noemt men de goudprijzen te Amsterdam en te Londen PA en PL, dan vindt men voor de pariteit izonder onkosten):

f x = 1 £

£ 1 = 20 s (in si PL — 1 standard-gold oz standard-gold, 12 = 11 * fijn goud „ fijn goud 12 = 373,242 G fijn goud G „ „ 1000 =r_ Pa (in guldens)

x = 0,5702308 .

U

éOif) Construeer een pariteitentafel van de zichtkoersen van Amsterdam op Londen uit den goudprijs te Amsterdam tusschen de grenzen f 1648 en ƒ1660 met verschillen van f 1 en den goudprijs te Londen tusschen de grenzen 77 s 9 d en 77 s 10^ d met verschillen van £ d.

Eerst berekent men, met behulp van de formule in liet voorgaande voorbeeld, hoe hoog 1 £ te staan komt, als de prijs te Amsterdam ƒ1648, die te Londen a) 77 s 9 d, b) 77 s 10£ d bedraagt; vervolgens als Amsterdam ƒ 1660, Londen c) 77 s 9 d, d) t < s 10^ d noteert. Men verkrijgt dan:

a) 0,5702308 X 1648 : 77£ = ƒ12,087

b) 0,5702308 X 1648 : 77* = „ 12,067

c) 0.5702308 X 1660 : 77J = „ 12,175

d) 0,5702308 X 1660 : 77f = , 12,15*

Elk dezer vier koersen komt in een der hoeken van de tafel te staan, ter plaatse waar de kolommen der daarbij behoorende koersen elkaar snijden. De overige koersen worden door interpolatie verkregen. (Zie

voorbeeld 399, § 402).

De interpolatie geeft voor een deel uitkomsten, die niet wiskundig juist zijni Bewijs dit. — Toch voldoen zg aan eiken eisch van nauwkeurigheid, dien de practijk stelt. Bij koersen, die de tafel niet bevat, kan de interpolatie gemakkelijk uit het hoofd uitgevoerd worden.

Sluiten