Onderstaande tekst is niet 100% betrouwbaar

Overzicht der verkregen uitkomsten.x)

§ l.

pa ■/ = 4 P fx y5 = 6 P ye = 18

P*v*p =6 P/^>V = 10 Pv5(j = 24

PSV = 8 P ^ _ 16 P y4 p2 = 28

P*y /js=8 Pp »*/>"= 16 PvV = 24

PV=8 P p y (j4 = 12 PyV = 16

P p ƒ35 = G Py ()5 = 8

P/ = 4

T /it f4 = 2 T y5 = 12

T//>^ =4 TVf =20

= 4 T)/8^=16

T [j, y p3 = 2 Ty2 />» = 8

T p ^ = 1 T> ^ = 4

T ^ = 2

§ 2.

p3y5 = l p2yö = 8 [x y7 = 34 ys = 92

/^3y4(3 =2 (JLivbp =14 pySp = 52 j,7^ =11G

/u.3 y3 p2 = 4 p2y4/j* = 24 fiv6pi = 16 v* p2 = 128

//3y2/j3 = 4 n2v3ps = 24 iJi-Ap3— 72 >5^3=104

ft9» /54 = 2 p2y2(j4 = 1G [xy3pi = 48 y4/34 = G4

pV = l p2y ƒ36 = 8 iiv*p6 = 24 yV = 32

^«==4 (tv (j6 = 12 y2 jj6 = 1G

l-i p1 = 6 v p7 = 8

/38 = 4

') Zie Dr. H. Schübert, Kalkiil der abzahlenden Geometrie, Hoofdstuk IV, § 20.

Sluiten